$$
\underbrace{\frac{1}{2}+\frac{1}{3}}+\frac{1}{9}=\frac{9}{18}+\frac{6}{18}+\frac{2}{18}=\frac{17}{18}=\frac{17}{2 \cdot 3^{2}}=\frac{4}{2}+\frac{B}{3}+\frac{C}{3^{2}}
$$

From Section 5.2

$$
\left.\frac{12}{s(s+4)}=\frac{A}{s}+\frac{B}{s+4}\right] s(s+4)
$$

$$
12=A(S+4)+B S
$$

Method 1: Systems of equations Method 2! numbers.

$$
\begin{aligned}
12 & =A s+B s+4 A \\
A+B & =0 \\
4 A & =12 \\
A & =3
\end{aligned} \quad \begin{aligned}
s=-4 \\
s=0
\end{aligned} \quad \begin{aligned}
& 12
\end{aligned} \quad B(-4)
$$

$$
B=-3
$$

$$
\frac{12}{s(s+4)}=\frac{3}{s}-\frac{3}{s+4}
$$

Ex: quadratic factor

$$
\begin{aligned}
& f(x)=\left[\begin{array}{rl}
\frac{\text { Ex: quadratic sector }}{x^{3}+4 x} & \left.=\frac{2 x^{2}+x-8}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}\right] x\left(x^{2}+4\right) \\
2 x^{2}+x-8 & =\frac{A\left(x^{2}+4\right)}{}+(B x+C) x
\end{array}\right.
\end{aligned}
$$

let $x=0 \quad-8=4 A$

$$
-2=A
$$

$$
8\left(+B x^{2}+C x\right.
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
-\alpha=A \\
C=1 \\
2 x^{2}=(-2+B) x^{2} \\
2=-2+B \\
4=B
\end{array}\right. \\
& f(x)=\frac{-2 x^{2}}{x}+\frac{4 x+1}{x^{2}+4} \\
& \frac{3 x^{2}-8 x+13}{(x+3)(x-1)^{2}}=\frac{A 4}{x+3}+\frac{B-1}{x-1}+\frac{A C}{(x-1)^{2}}
\end{aligned}
$$

Ex

Repented factors.

$$
\begin{aligned}
& 3 x^{2}-8 x+13=A \underbrace{(x-1)^{2}}+B(x-1)(x+3)+C \underbrace{(x+3)} \\
& x=1 \quad 3-8+13=4 C \\
& 8=4 C \\
& 2=c \\
& x=-3 \quad 3(9)-8(-3)+13=A(-4)^{2} \\
& 64=16 A \\
& 4=A \\
& 3 x^{2}-8 x+13=4(x-1)^{2}+B(x-1)(x+3) \neq 2(x+3) \\
& x=0 \quad 13=4+B(-1)(3)+2(3) \\
& 3=-3 B \\
& -1=B \\
& \text { Ex: } \mathcal{L}^{-1}\left\{\frac{s^{2}+4}{s^{4}-s^{2}}\right\}
\end{aligned}
$$

Ex: $\mathcal{L}^{-1}\left\{\frac{{ }^{+}+1}{s^{4}-s^{2}}\right\}$
$0-4+5 / 2-5 / 2$

$$
\begin{aligned}
& \frac{s^{2}+4}{s^{2}\left(s^{2}-1\right)}=\frac{s^{2}+4}{s^{2}(s-1)(s+1)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{A}{s-1}+\frac{D}{s+1} \\
& s^{2}+4=A S(s-1)(s+1)+(s-1)(s+1) y\left(s^{2}(s+1)+1 s^{2}(s-1)\right. \\
& S=0 \quad 4=-B \Rightarrow B=-4 \\
& S=1 \quad S=2 C \Rightarrow C=5 / 2 \\
& S=-1 \quad S=-2 D \Rightarrow D=-\frac{5}{2} \\
& S=2 \quad 8=A(2)(1)(3)-4(1)(3)+\frac{5^{2}}{2}(4)(3)-\frac{5}{2}(4)^{2}(1) \\
& 8=6 A-12+30-10 \\
& 0=6 A \\
& 0=A \\
& \mathcal{L}^{-1}\left\{\frac{-4}{0=A} \quad \begin{array}{l}
\alpha=-1 \\
s^{2}
\end{array} \frac{5}{\frac{1}{2}} \frac{1}{s-1}-\frac{5}{2} \frac{1}{s+1}\right\} \\
& +5 / 2 \\
& -5 / 2 \\
& O=A \\
& \left.\operatorname{row}_{\text {row }} \mathcal{L}^{-1}\left\{\frac{n!_{0}}{s^{n+1}}\right\}=t^{n}\right\}-4 \frac{1}{s^{2}} \\
& \text { row } 4 \mathcal{L}^{-1}\left\{\frac{1}{s-\alpha}\right\}=e^{\alpha t} \\
& =-4 t^{\prime}+\frac{5}{2} e^{t}-\frac{5}{2} e^{-t}
\end{aligned}
$$

